DEswan.Rd
Differential Expression - Sliding Window ANalysis (DE-SWAN)
DEswan(data.df, qt, window.center, buckets.size, covariates)
data.df: | a data Frame - columns are variables and rows are samples (same order as qt and covariates) |
---|---|
qt: | a Vector - quantitative trait for DE-SWAN (same order as data.df and covariates) |
window.center: | an optional Vector - window centers. Default is quantile(qt, probs = seq(.1,.9,.1)) |
buckets.size: | an optional Numeric - size of each bucket. Default is set to (max(range(qt))-min(range(qt)))/2 |
covariates: | a data Frame. Columns are variables and rows are samples (same order as qt and covariates) |
list of 2 data Frames: $p = pvalues of qT and covariates for each variable and each window.center and $coefficients = coefficients of qT and covariates for each variable and each window.center
res.DEswan=DEswan(data.df = agingplasmaproteome[,-c(1:3)], qt = agingplasmaproteome[,1], window.center = seq(40,100,10), buckets.size = 10, covariates = agingplasmaproteome[,c(2:3)])#> [1] "window.center 1/7" #> [1] "window.center 2/7" #> [1] "window.center 3/7" #> [1] "window.center 4/7" #> [1] "window.center 5/7" #> [1] "window.center 6/7" #> [1] "window.center 7/7"#> variable window.center factor pvalue #> 1 Feature_1 40 qt 0.479188190 #> 2 Feature_1 40 Sex 0.064129958 #> 3 Feature_1 40 Cohort 0.002082943 #> 4 Feature_2 40 qt 0.818757036 #> 5 Feature_2 40 Sex 0.106665375 #> 6 Feature_2 40 Cohort 0.116499806#> variable window.center factor coefficient #> (Intercept) Feature_1 40 (Intercept) 3.482908497 #> qt.tmp1 Feature_1 40 qt 0.035679739 #> covariates$SexMale Feature_1 40 SexMale 0.103411765 #> covariates$CohortSeattle Feature_1 40 CohortSeattle -0.310418301 #> (Intercept)1 Feature_2 40 (Intercept) 2.723666667 #> qt.tmp11 Feature_2 40 qt -0.006666667